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Abstract— Estimation of tire surface friction coefficients when
moving over diverse and changing terrain is challenging. Estimation
of friction coefficients is critical to ensuring that model-based control
approaches can generate controls that track a desired reference tra-
jectory, and maintain passenger safety. Utilizing a combined physics-
constrained and vision-informed approach can identify shifting ter-
rain, and quickly fit friction estimates that enable performant control.
We use gradient-based optimization in conjunction with dynamics
models to calculate coefficient estimates, and vision algorithms to
identify the current terrain. This approach enables model-based
control approaches in off-road and adverse environments without
expensive system identification, keeping people and equipment safe.

I. INTRODUCTION

We present an approach to identify tire-surface friction
coefficients in settings with changing road surfaces. Estimation
of tire-surface friction coefficients is difficult, dependent upon
difficult to estimate true friction coefficients and state information.
Approaches that rely on directly sensing or estimating the friction
of the surface are subject to error due to surfaces that may appear
the same to a suite of sensors, but have differing friction values
[1]. Approaches that are purely data-driven are dependent on
the completeness and accuracy of the dataset. Dynamics-based
approaches use dynamics models and filtering approaches to
obtain road-surface friction estimates.

We present a fusion approach that uses visual information to
cluster surfaces into groups, and then uses a dynamics model
paired with a gradient-based solver to identify model parameters
related to tire-surface friction. Our approach uniquely pairs surface
clustering and a distributional approach to friction estimation
driven by physics-constrained optimization, for multi-surface
off-road friction estimation.

II. PROBLEM STATEMENT

The tire-surface friction parameters we seek to identify are
present in our dynamics model as a Pacjeka tire model [2]. We
observe a series of states x=(s,i)∈S×I, where S is the space
of state variables, and I is the space of images. We also record the
actions applied to the system a∈A. We receive one observation
for each timestep in the interval 0≤t≤T . To model the dynamics
of the vehicle, we have a model ṡ=f(s,a|θd,θf), which governs
the evolution of the state s, subject to the current state and action,
and two sets of parameters, θf which is the set of tire-surface
friction parameters, and θd, which is the set of all other parameters.
We assume that the parameters θd are known apriori and are time
invariant.

We group terrain into clusters ci based on the state. For each
cluster, we have a distribution of friction values θif ∼N (µi

f ,σ
i
f),

which parametrize a normal distribution. The full set of friction
distributions is Θf ={θ1f ,...,θCf }, which we aim to find. For each

Fig. 1. This figure shows the proposed approach, detailed in Equation (2). Images
from our observation are clustered, and an initial guess and the states observed
are used to optimize the parameter estimates.

timestep, the correct cluster is identified, and a specific value θ̂f
is drawn from the relevant distribution. We use the symbol ∼ to
denote that a sample is drawn from a distribution. We formulate
this as an optimization problem as follows:

Θf = minimize
Θ̂f ,̂ct

EΘf

[
T∑
t=0

∥st−ŝt∥2
]

(1a)

subject to ŝ0=s0, (1b)
ĉt=Cluster(si), (1c)

θ̂f ∼θĉtf , (1d)

ŝt+1=f(st,at|θd,θ̂f) (1e)

In (1a), we minimize the L2 norm of the error between our
predicted states ŝ given Θf and the observed state s. The first
constraint (1b) ensures the initial state matches the observed state.
The second constraint (1c) maps each state to a terrain cluster. The
third constraint (1d) maps our current estimate of the parameters
θ̂f to a parametrized distribution θĉtf . Finally, we update the state
using our dynamics and the parameters corresponding to the
current terrain cluster in (1e).

III. METHODS

We propose to solve this optimization problem (1) by breaking it
down into a dual minimization, specified in Equation (2).The orig-
inal problem is then solved in two steps: first, identify the terrain
cluster that the vehicle is currently on by feeding the current state
and input image to our vision-informed friction clustering (VFC),
and then minimize the parameters of our set Θ̂f using a physics-
informed optimizer. An overview of this architecture is in Figure 1.

The VFC is based on a ResNet [3] backbone, and trained to gen-
erate image embeddings that are used to create our terrain clusters
ct. We then apply an off-the-shelf clustering algorithm, like Mean
Shift [4]. During the optimization process, we find the closest point
for which we have an image, and use the associated terrain cluster.
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Fig. 2. Numerical simulation results that show the improvement in the parameter
estimate. The target data was generated with a multi-body model, and the parameter
estimates are generated with a dynamic bicycle model with Pajecka tire forces.

min
Θ̂f

min
ĉt

EΘf

[
T∑
t=0

∥st−ŝt∥2
]

(2a)

subject to ĉt=VFC(st,it), (2b)

θ̂f ∼θĉtf , (2c)

ŝ0=s0, (2d)

ŝt+1=f(st,at|θd,θ̂f) (2e)

We create a set of friction parameters θtf for each of the clusters,
and optimize by exploiting differentiable dynamics. We integrate
the ODE with the current set of parameters, and use PyTorch’s
auto differentiation to calculate gradients and optimize the friction
parameters [5]. To better identify the distribution that the parame-
ters belong to, we draw multiple values from the distributions Θf ,
solving this problem in a multiple-shooting fashion.

IV. RESULTS

We plan to evaluate our approach in three settings. First, a
numerical simulation environment, where the plant model is a
multi-body dynamics model [6] following a reference trajectory on
changing terrain, where the exact friction coefficients and surfaces
are known. Second, a photorealistic simulation environment,
CARLA [7], where the vehicle follows a reference trajectory on
changing terrain, including ice, asphalt, and grass. Finally, we
evaluate our approach on a 1:5 scaled off-road platform, driving
on grass, stone, and gravel.

A. Current Results: Numerical Simulation

We generated data using an extension of the F1Tenth Gym sim-
ulator [8], which incorporates multi-body physics. The model used
in our approach was a dynamic bicycle model with Pajecka tire
forces [9]. The objective of this experiment is to observe the perfor-
mance of the physics-constrained optimization algorithm when the
ground-truth terrain is given, and true state information is known.

Our initial parameter estimate was taken from a nominal tire
force model. The plot in Figure 2 shows the recorded trajectory in
blue, and trajectories generated with our dynamic bicycle model
in green and orange. The green trajectory represents the initial

Fig. 3. The 1/5th scale platform we plan to use to evaluate our approach.

parameter estimate, and the orange represents the final parameter
estimate. The green and orange trajectories are integrated from the
initial condition for 20,000 timesteps, with a lower fidelity model
than that used to generate the recorded trajectory, specifically a
single track dynamic bicycle model.

B. Future Experiments

The photorealistic CARLA simulator will be used to run one
set of experiments, with the aim of testing the performance of the
approach when true state information is given, and the terrain clus-
tering is done via clustering of image data. We will evaluate on ice,
asphalt, and grass. Our final experiment will explore the efficacy
of our approach in a real off-road robotics platform, pictured in Fig-
ure 3, where our robot will traverse asphalt, grass, gravel and stone.

V. BACKGROUND

Much of the existing work in tire surface friction coefficient
estimation focuses on the identification of tire-road friction.
There are three families of approaches to identifying tire-road
friction coefficients, direct sensing, dynamics-based approaches,
and data-driven approaches [1]. Direct sensing approaches use
camera, laser, and other sensor data to capture the roughness of
the surface [10], [11]. Dynamics-based approaches use a dynamic
vehicle model and state information from the vehicle to identify
tire-road friction [12], [13], [14], [15]. Learning-based approaches
use historical data and machine learning to predict tire-road
friction [16]. Finally, there are hybrid approaches, which combine
the strengths of different methodologies to improve estimation
precision and reliability. For instance, integrating camera-based
road surface analysis with dynamic tire modeling can significantly
enhance the accuracy of friction estimations [17], [18]. Still other
approaches attempt to model the full dynamics from visual input
[19]. Our approach has the advantage of not needing any labeled
data as both the parameters and the clusters are learnt.
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